Extremal P4-stable graphs
نویسندگان
چکیده
Call a graph G k-stable (with respect to some graph H) if, deleting any k edges of G, the remaining graph still contains H as a subgraph. For a fixed H, the minimum number of edges in a k-stable graph is denoted by S(k). We prove general bounds on S(k) and compute the exact value of the function S(k) for H = P4. The main result can be applied to extremal k-edge-hamiltonian hypergraphs.
منابع مشابه
On P4-transversals of chordal graphs
A P4-transversal of a graph G is a set of vertices T which meets every P4 of G. A P4transversal T is called stable if there are no edges in the subgraph of G induced by T . It has been previously shown by Hoàng and Le that it is NP -complete to decide whether a comparability (and hence perfect) graph G has a stable P4-transversal. In the following we show that the problem is NP -complete for ch...
متن کاملEccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملSplit-Perfect Graphs: Characterizations and Algorithmic Use
Two graphs G and H with the same vertex set V are P4-isomorphic if every four vertices {a, b, c, d} ⊆ V induce a chordless path (denoted by P4) in G if and only if they induce a P4 in H. We call a graph split-perfect if it is P4-isomorphic to a split graph (i.e., a graph being partitionable into a clique and a stable set). This paper characterizes the new class of split-perfect graphs using the...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملThe Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 159 شماره
صفحات -
تاریخ انتشار 2011